15,048 research outputs found

    Forecasting multiple functional time series in a group structure: an application to mortality’

    Get PDF
    When modeling sub-national mortality rates, we should consider three features: (1) how to incorporate any possible correlation among sub-populations to potentially improve forecast accuracy through multi-population joint modeling; (2) how to reconcile sub-national mortality forecasts so that they aggregate adequately across various levels of a group structure; (3) among the forecast reconciliation methods, how to combine their forecasts to achieve improved forecast accuracy. To address these issues, we introduce an extension of grouped univariate functional time series method. We first consider a multivariate functional time series method to jointly forecast multiple related series. We then evaluate the impact and benefit of using forecast combinations among the forecast reconciliation methods. Using the Japanese regional age-specific mortality rates, we investigate one-step-ahead to 15-step-ahead point and interval forecast accuracies of our proposed extension and make recommendations

    Dynamical Electron Mass in a Strong Magnetic Field

    Get PDF
    Motivated by recent interest in understanding properties of strongly magnetized matter, we study the dynamical electron mass generated through approximate chiral symmetry breaking in QED in a strong magnetic field. We reliably calculate the dynamical electron mass by numerically solving the nonperturbative Schwinger-Dyson equations in a consistent truncation within the lowest Landau level approximation. It is shown that the generation of dynamical electron mass in a strong magnetic field is significantly enhanced by the perturbative electron mass that explicitly breaks chiral symmetry in the absence of a magnetic field.Comment: 5 pages, 1 figure, published versio

    The structure, energy, and electronic states of vacancies in Ge nanocrystals

    Full text link
    The atomic structure, energy of formation, and electronic states of vacancies in H-passivated Ge nanocrystals are studied by density functional theory (DFT) methods. The competition between quantum self-purification and the free surface relaxations is investigated. The free surfaces of crystals smaller than 2 nm distort the Jahn-Teller relaxation and enhance the reconstruction bonds. This increases the energy splitting of the quantum states and reduces the energy of formation to as low as 1 eV per defect in the smallest nanocrystals. In crystals larger than 2 nm the observed symmetry of the Jahn-Teller distortion matches the symmetry expected for bulk Ge crystals. Near the nanocrystal's surface the vacancy is found to have an energy of formation no larger than 0.5 to 1.4 eV per defect, but a vacancy more than 0.7 nm inside the surface has an energy of formation that is the same as in bulk Ge. No evidence of the self-purification effect is observed; the dominant effect is the free surface relaxations, which allow for the enhanced reconstruction. From the evidence in this paper, it is predicted that for moderate sized Ge nanocrystals a vacancy inside the crystal will behave bulk-like and not interact strongly with the surface, except when it is within 0.7 nm of the surface.Comment: In Press at Phys. Rev.
    • …
    corecore